Требуется обойти конем все 64 клетки шахматной доски так, чтобы на каждой клетке конь был только один раз и затем возвратился бы в клетку, из которой вышел.
Задачей этой занимался Эйлер и в письме к Гольдбаху (26 апреля 1757 года) дал одно из решений ее. Вот что, между прочим, пишет он в этом интересном письме:
«... Воспоминание о предложенной когда-то мне задаче послужило для меня недавно поводом к некоторым тонким изысканиям, в которых обыкновенный анализ, как кажется, не имеет никакого применения. Вопрос состоит в следующем. Требуется обойти шахматным конем все 64 клетки шахматной доски так, чтобы на каждой клетке он побывал только один раз. С этой целью все места, которые занимал конь при своих последовательных ходах, закрывались марками. Но к этому присоединилось еще требование, чтобы начало хода делалось с данного места. Это последнее условие казалось мне очень затрудняющим вопрос, так как я скоро нашел некоторые пути, при которых, однако, выбор начала для меня свободен. Я утверждаю, однако, что если полный обход коня будет возвратный, т. е. если конь из последнего места опять может перейти на первое, то устраняется и это затруднение. После некоторых изысканий по этому поводу я нашел, наконец, ясный способ находить сколько угодно подобных решений (число их, однако, не бесконечно), не делая проб. Подобное решение представлено на рисунке (рис. 1).
Рис. 1. Решение задачи о ходе шахматного коня, данное Эйлером.
Конь ходит в порядке, указанном числами. Так как из последнего места 64 он может перейти на 1, то этот полный ход есть возвратный».
Таково решение задачи о ходе шахматного коня, данное Эйлером.
В письме не указаны ни приемы, ни путь, которыми знаменитый ученый пришел к своему открытию.