В предметах окружающего мира вы прежде всего замечаете их отдельные свойства, отличающие один предмет от другого.
Обилие частных, индивидуальных свойств заслоняет собой свойства общие, присущие решительно всем предметам, и обнаружить такие свойства поэтому всегда труднее.
Одним из важнейших общих свойств предметов является то, что все предметы можно считать и измерять. Мы отражаем это общее свойство предметов в понятии числа.
Потребность считать и сравнивать (измерять) предметы возникла у людей не сразу, но очень давно — еще на ранней ступени развития человека, возникла в процессе его трудовой деятельности.
Овладевали люди процессом счета, то-есть понятием числа, очень медленно, веками, в упорной борьбе за свое существование.
Чтобы считать, надо иметь не только предметы, подлежащие счету, но обладать уже способностью отвлекаться при рассматривании этих предметов от всех прочих их свойств, кроме числа, а эта способность есть результат долгого, опирающегося на опыт, исторического развития.
Счету при помощи числа обучается теперь каждый человек незаметно еще в детстве, почти одновременно с тем, как начинает говорить, но этот привычный нам счет прошел длительный путь развития и принимал разные формы.
Было время, когда для счета предметов употреблялись лишь два числительных: один и два. В процессе дальнейшего расширения системы счисления привлекались части человеческого тела и в первую очередь пальцы, а если не хватало такого рода «цифр», то еще палочки, камешки и другие вещи.
Н. Н. Миклухо-Маклай в своей книге «Путешествия» рассказывает о забавном способе счета, применявшемся туземцами Новой Гвинеи:
«Излюбленный способ счета состоит в том, что папуас загибает один за другим пальцы руки, причем издает определенный звук, например, «бе, бе, бе» ... Досчитав до пяти, он говорит «ибон-бе» (рука). Затем он загибает пальцы другой руки, снова повторяет «бе, бе» ..., пока не доходит до «ибон-али» (две руки). Затем он идет дальше, приговаривая «бе, бе» ..., пока не доходит до «самба-бе» и «самба-али» (одна нога, две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого-нибудь другого».
Вслед за возникновением и развитием чисел появилась и замечательная наука об их свойствах и законах, ими управляющих: «теория чисел».
Оперируя числами, то есть выполняя разнообразные математические действия, мы обнаруживаем не только их общие свойства, изучением которых занимается теория чисел, но и свойства особые, присущие иногда лишь небольшим группам чисел или отдельным числам. Эти особенные свойства могут и не иметь большого теоретического значения, но нередко весьма любопытны. Покопайтесь в огромном массиве чисел, которых больше, чем руды в земле, и вы найдете свойства интересные и удивительные, диковинные и забавные, неожиданные и курьезные.