Наши посетители

Яндекс.Метрика

       

 

style="display:block"
data-ad-format="autorelaxed"
data-ad-client="ca-pub-7243391027288256"
data-ad-slot="5134528685">

АБЕЛЬ НИЛЬС ГЕНРИХ (1802-1829)

 

В Королевском парке в Осло стоит скульптура сказочного юноши, попирающего двух поверженных чудовищ; по цоколю идет надпись "ABEL". 
 
Что же символизируют чудовища? Первое из них, несомненно, алгебраические уравнения 5-й степени. Еще в последних классах школы Абелю показалось, что он нашел формулу для их решения, подобную тем, которые существуют для уравнений степени, не превышающей четырех. Никто в провинциальной Норвегии не смог проверить доказательство. Абель сам нашел у себя ошибку, он уже знал, что не существует выражения для корней в радикалах. Тогда Абель не знал, что итальянский математик П. Руффини опубликовал доказательство этого утверждения, содержащее, однако, пробелы. 
 
К тому времени Абель был уже студентом университета в Осло (тогда Христиании). Он был совершенно лишен средств к существованию, и первое время стипендию ему выплачивали профессора из собственных средств. Затем он получил государственную стипендию, которая позволила ему провести два года за границей. В Норвегии были люди, которые понимали, сколь одарен Абель, но не было таких, кто мог бы понять его работы. Будучи в Германии, Абель так и не решился посетить К. Гаусса. 
 
Во Франции Абель с интересом собирает математические новости, пользуется каждой возможностью увидеть П. Лапласа или А. Лежандра, С. Пуассона или О. Коши, но серьезных научных контактов с великими математиками установить не удалось. Представленный в академию «Мему-ар об одном очень общем классе трансцендентных функций» не был рассмотрен, рукопись Абеля была обнаружена через сто лет. (В скульптуре эту работу олицетворяло второе поверженное чудовище.) Речь шла о рассмотрении некоторого класса замечательных функций, получивших название эллиптических и сыгравших принципиальную роль в дальнейшем развитии математического анализа. Абель не знал, что 30 лет назад в этих вопросах далеко продвинулся Гаусс, но ничего не опубликовал. 
 
В 1827 г. Абель возвращается на родину, и там выясняется, что для него нет работы. Он получает временную работу вместо профессора, уехавшего в длительную экспедицию в Сибирь. Долги становятся его вечным уделом, но работоспособность Абеля не уменьшается. Он продолжает развивать теорию эллиптических функций, близок к пониманию того, какие уравнения решаются в радикалах. Неожиданно появляется соперник-К. Г. Якоби, который был на два года моложе Абеля. Якоби публикует замечательные результаты в области, которую Абель считал своей собственностью. И Абель работает еще интенсивнее и наконец сообщает: «Я нокаутировал Якоби». 
 
К работам Абеля пришло признание, математики стали проявлять заботу о его судьбе. Французские академики-математики обращаются с посланием к шведскому королю, правившему Норвегией, с просьбой принять участие в судьбе Абеля. Тем временем у Абеля быстро прогрессирует туберкулез, и 6 апреля 1829 г. его не стало.

На страницах данного портала администрация надеется собрать все интересные (с точки зрения администрации) материалы, которые связаны с математикой.
Администрация портала надеется, что все книги и пособия по математике, задачи занимательной математики , статьи по математике подойдут почти любому ищущему данные материалы.
Самое главное все, что находится на сайте вы можете качать совершенно бесплатно, и запомните, все ссылки здесь работают, потому что этот сайт сделан Вам в помощь,
так как администрации хорошо известно как тяжело найти на бескрайних просторах интернета нужный материал.
Все материалы, опубликованные на данном сайте, предназначены исключительно для образовательных и ознакомительных целей.